
Visualise the top concepts per each cdm name, cohort, statification and window.
Source:R/tableLargeScaleCharacteristics.R
tableTopLargeScaleCharacteristics.RdVisualise the top concepts per each cdm name, cohort, statification and window.
Arguments
- result
A summarised_result object.
- topConcepts
Number of concepts to restrict the table.
- type
Type of table, it can be any of the supported
visOmopResults::tableType()formats.- style
Named list that specifies how to style the different parts of the table generated. It can either be a pre-defined style ("default" or "darwin" - the latter just for gt and flextable), NULL to get the table default style, or custom. Keep in mind that styling code is different for all table styles. To see the different styles see
visOmopResults::tableStyle().
Examples
if (FALSE) { # \dontrun{
library(CohortCharacteristics)
library(omock)
libarry(CDMConnector)
library(dplyr, warn.conflicts = FALSE)
cdm <- mockCdmFromDataset(datasetName = "GiBleed", source = "duckdb")
cdm <- generateConceptCohortSet(
cdm = cdm,
conceptSet = list(viral_pharyngitis = 4112343),
name = "my_cohort"
)
result <- summariseLargeScaleCharacteristics(
cohort = cdm$my_cohort,
window = list(c(-Inf, -1), c(0, 0), c(1, Inf)),
episodeInWindow = "drug_exposure"
)
tableTopLargeScaleCharacteristics(result)
cdmDisconnect(cdm)
} # }