
Visualise the top concepts per each cdm name, cohort, statification and window.
Source:R/tableLargeScaleCharacteristics.R
tableTopLargeScaleCharacteristics.RdVisualise the top concepts per each cdm name, cohort, statification and window.
Arguments
- result
A summarised_result object.
- topConcepts
Number of concepts to restrict the table.
- type
Type of table, it can be any of the supported
visOmopResults::tableType()formats.- style
Defines the visual formatting of the table. This argument can be provided in one of the following ways:
Pre-defined style: Use the name of a built-in style (e.g., "darwin"). See
visOmopResults::tableStyle()for available options.YAML file path: Provide the path to an existing .yml file defining a new style.
List of custome R code: Supply a block of custom R code or a named list describing styles for each table section. This code must be specific to the selected table type.
If style =
NULL, the function will use global options (seevisOmopResults::setGlobalTableOptions()) or an existing_brand.yml file (if found); otherwise, the default style is applied. For more details, see the Styles vignette in visOmopResults website.
Examples
if (FALSE) { # \dontrun{
library(CohortCharacteristics)
library(omock)
libarry(CDMConnector)
library(dplyr, warn.conflicts = FALSE)
cdm <- mockCdmFromDataset(datasetName = "GiBleed", source = "duckdb")
cdm <- generateConceptCohortSet(
cdm = cdm,
conceptSet = list(viral_pharyngitis = 4112343),
name = "my_cohort"
)
result <- summariseLargeScaleCharacteristics(
cohort = cdm$my_cohort,
window = list(c(-Inf, -1), c(0, 0), c(1, Inf)),
episodeInWindow = "drug_exposure"
)
tableTopLargeScaleCharacteristics(result)
cdmDisconnect(cdm)
} # }