Format a summarise_large_scale_characteristics object into a visual table.
Source:R/tableLargeScaleCharacteristics.R
tableLargeScaleCharacteristics.Rd
Usage
tableLargeScaleCharacteristics(
result,
topConcepts = NULL,
type = "gt",
header = c("cdm_name", "cohort_name", visOmopResults::strataColumns(result),
"variable_level"),
groupColumn = c("table_name", "type", "analysis"),
hide = character()
)
Arguments
- result
A summarised_result object. Output of summariseLargeScaleCharacteristics().
- topConcepts
Number of concepts to restrict the table.
- type
Type of table. Check supported types with
visOmopResults::tableType()
.- header
Columns to use as header. See options with
tidyColumns(result)
.- groupColumn
Columns to group by. See options with
tidyColumns(result)
.- hide
Columns to hide from the visualisation. See options with
tidyColumns(result)
.
Examples
if (FALSE) { # \dontrun{
library(DBI)
library(duckdb)
library(CDMConnector)
con <- dbConnect(duckdb(), eunomiaDir())
cdm <- cdmFromCon(con = con, cdmSchema = "main", writeSchema = "main")
cdm <- generateConceptCohortSet(
cdm = cdm,
conceptSet = list("viral_pharyngitis" = 4112343),
name = "my_cohort"
)
result <- summariseLargeScaleCharacteristics(
cohort = cdm$my_cohort,
eventInWindow = "condition_occurrence",
episodeInWindow = "drug_exposure"
)
tableLargeScaleCharacteristics(result)
cdmDisconnect(cdm)
} # }