
Format a summariseCohortTiming result into a visual table.
Source:R/tableCohortTiming.R
tableCohortTiming.RdUsage
tableCohortTiming(
result,
timeScale = "days",
uniqueCombinations = TRUE,
type = NULL,
header = strataColumns(result),
groupColumn = c("cdm_name"),
hide = c("variable_level", settingsColumns(result)),
style = NULL,
.options = list()
)Arguments
- result
A summarised_result object.
- timeScale
Time scale to show, it can be "days" or "years".
- uniqueCombinations
Whether to restrict to unique reference and comparator comparisons.
- type
Character string specifying the desired output table format. See
visOmopResults::tableType()for supported table types. If type =NULL, global options (set viavisOmopResults::setGlobalTableOptions()) will be used if available; otherwise, a default 'gt' table is created.- header
Columns to use as header. See options with
availableTableColumns(result).- groupColumn
Columns to group by. See options with
availableTableColumns(result).- hide
Columns to hide from the visualisation. See options with
availableTableColumns(result).- style
Defines the visual formatting of the table. This argument can be provided in one of the following ways:
Pre-defined style: Use the name of a built-in style (e.g., "darwin"). See
visOmopResults::tableStyle()for available options.YAML file path: Provide the path to an existing .yml file defining a new style.
List of custome R code: Supply a block of custom R code or a named list describing styles for each table section. This code must be specific to the selected table type.
If style =
NULL, the function will use global options (seevisOmopResults::setGlobalTableOptions()) or an existing_brand.yml file (if found); otherwise, the default style is applied. For more details, see the Styles vignette in visOmopResults website.- .options
A named list with additional formatting options.
visOmopResults::tableOptions()shows allowed arguments and their default values.
Examples
if (FALSE) { # \dontrun{
library(CohortCharacteristics)
library(omock)
library(DrugUtilisation)
cdm <- mockCdmFromDataset(datasetName = "GiBleed", source = "duckdb")
cdm <- generateIngredientCohortSet(
cdm = cdm,
name = "my_cohort",
ingredient = c("acetaminophen", "morphine", "warfarin")
)
timings <- summariseCohortTiming(cdm$my_cohort)
tableCohortTiming(timings, timeScale = "years")
cdmDisconnect(cdm)
} # }