Skip to contents

[Experimental]

Usage

tableCohortTiming(
  result,
  timeScale = "days",
  uniqueCombinations = TRUE,
  type = "gt",
  header = visOmopResults::strataColumns(result),
  groupColumn = NULL,
  hide = "variable_level"
)

Arguments

result

A summarised_result object. Output of summariseCohortTiming().

timeScale

Time scale to plot results. Can be days or years.

uniqueCombinations

Whether to restrict to unique reference and comparator comparisons.

type

Type of table. Check supported types with visOmopResults::tableType().

header

Columns to use as header. See options with tidyColumns(result).

groupColumn

Columns to group by. See options with tidyColumns(result).

hide

Columns to hide from the visualisation. See options with tidyColumns(result).

Value

A formatted table of the summariseCohortTiming result.

Examples

if (FALSE) { # \dontrun{
library(CohortCharacteristics)
library(duckdb)
library(CDMConnector)
library(DrugUtilisation)

con <- dbConnect(duckdb(), eunomiaDir())
cdm <- cdmFromCon(con, cdmSchem = "main", writeSchema = "main")

cdm <- generateIngredientCohortSet(
  cdm = cdm,
  name = "my_cohort",
  ingredient = c("acetaminophen", "morphine", "warfarin")
)

timings <- summariseCohortTiming(cdm$my_cohort)

plotCohortTiming(
  timings,
  timeScale = "years",
  facet = c("cdm_name", "cohort_name_reference"),
  colour = c("cohort_name_comparator")
)

cdmDisconnect(cdm)
} # }