Skip to contents

[Experimental]

Usage

tableCohortCount(
  result,
  type = NULL,
  header = "cohort_name",
  groupColumn = character(),
  hide = c("variable_level", settingsColumns(result)),
  style = NULL,
  .options = list()
)

Arguments

result

A summarised_result object.

type

Character string specifying the desired output table format. See visOmopResults::tableType() for supported table types. If type = NULL, global options (set via visOmopResults::setGlobalTableOptions()) will be used if available; otherwise, a default 'gt' table is created.

header

Columns to use as header. See options with availableTableColumns(result).

groupColumn

Columns to group by. See options with availableTableColumns(result).

hide

Columns to hide from the visualisation. See options with availableTableColumns(result).

style

Defines the visual formatting of the table. This argument can be provided in one of the following ways:

  1. Pre-defined style: Use the name of a built-in style (e.g., "darwin"). See visOmopResults::tableStyle() for available options.

  2. YAML file path: Provide the path to an existing .yml file defining a new style.

  3. List of custome R code: Supply a block of custom R code or a named list describing styles for each table section. This code must be specific to the selected table type.

If style = NULL, the function will use global options (see visOmopResults::setGlobalTableOptions()) or an existing ⁠_brand.yml⁠ file (if found); otherwise, the default style is applied. For more details, see the Styles vignette in visOmopResults website.

.options

A named list with additional formatting options. visOmopResults::tableOptions() shows allowed arguments and their default values.

Value

A formatted table.

Examples

# \donttest{
library(CohortCharacteristics)

cdm <- mockCohortCharacteristics()

result <- summariseCohortCount(cdm$cohort1)
#>  summarising data
#>  summarising cohort cohort_1
#>  summarising cohort cohort_2
#>  summarising cohort cohort_3
#>  summariseCharacteristics finished!

tableCohortCount(result)
CDM name Variable name Estimate name
Cohort name
cohort_1 cohort_2 cohort_3
PP_MOCK Number records N 3 2 5
Number subjects N 3 2 5
# }