Skip to contents

DISEASE EPIDEMIOLOGY

Population-level descriptive epidemiology

These analyses include an assessment of the incidence or prevalence of specific conditions, eventually stratified by time or by population subgroups like age or sex.

A typical population-level descriptive epidemiology study will have an objective like:

To estimate the monthly incidence rate and point prevalence of disease A stratified by sex and age.

Report Contents

The report will include an executive summary and the following tables and figures:

  • Table 1: Number of participants and total number of incident and/or prevalent cases in each data source during the study period. Number of participants per pre-specified strata will be included where necessary/applicable.
CohortCharacteristics::tableCharacteristics(
  result,
  type = "gt",
  header = c("cdm_name", "cohort_name"),
  groupColumn = character(),
  hide = c(additionalColumns(result), settingsColumns(result)),
  .options = list(style = "darwin")
)
CDM name
PP_MOCK
Variable name Variable level Estimate name
Cohort name
cohort_1 cohort_2 cohort_3
Number records - N 6 2 2
Number subjects - N 6 2 2
Cohort start date - Median [Q25 - Q75] 1976-02-17 [1926-12-14 - 1983-07-28] 1955-12-29 [1943-09-07 - 1968-04-20] 1991-04-01 [1980-01-29 - 2002-06-01]
Range 1907-01-04 to 1991-11-21 1931-05-17 to 1980-08-11 1968-11-27 to 2013-08-02
Cohort end date - Median [Q25 - Q75] 1983-05-14 [1930-11-19 - 1990-08-18] 1958-08-28 [1945-02-08 - 1972-03-17] 1995-05-06 [1986-03-13 - 2004-06-27]
Range 1912-07-22 to 1997-10-31 1931-07-22 to 1985-10-05 1977-01-19 to 2013-08-19
Age - Median [Q25 - Q75] 7 [3 - 18] 12 [10 - 15] 24 [19 - 30]
Mean (SD) 12.17 (12.59) 12.50 (7.78) 24.50 (16.26)
Range 2 to 33 7 to 18 13 to 36
Sex Female N (%) 4 (66.67%) 2 (100.00%) 1 (50.00%)
Male N (%) 2 (33.33%) - 1 (50.00%)
Prior observation - Median [Q25 - Q75] 2,850 [1,354 - 7,065] 4,745 [3,719 - 5,771] 9,220 [7,150 - 11,291]
Mean (SD) 4,672.67 (4,637.15) 4,745.00 (2,901.97) 9,220.50 (5,856.97)
Range 733 to 12,276 2,693 to 6,797 5,079 to 13,362
Future observation - Median [Q25 - Q75] 7,254 [4,476 - 12,970] 2,052 [1,789 - 2,314] 3,466 [2,248 - 4,685]
Mean (SD) 8,389.17 (5,498.88) 2,051.50 (743.17) 3,466.50 (3,447.15)
Range 2,246 to 15,156 1,526 to 2,577 1,029 to 5,904
Days in cohort - Median [Q25 - Q75] 2,366 [2,063 - 2,578] 974 [521 - 1,428] 1,497 [758 - 2,236]
Mean (SD) 2,179.50 (633.44) 974.50 (1,283.40) 1,497.00 (2,091.62)
Range 1,007 to 2,727 67 to 1,882 18 to 2,976
  • Figure 1: Incidence rate/s of disease over calendar time (per month/year) overall
IncidencePrevalence::plotIncidence(
  result = incidence_result_figure_1,
  x = "incidence_start_date",
  y = "incidence_100000_pys",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "incidence_100000_pys_95CI_lower",
  ymax = "incidence_100000_pys_95CI_upper",
  facet = NULL,
  colour = "cdm_name"
)

  • Figure 2: Incidence rate/s of disease over calendar time (per month/year) stratified by sex and age (or other pre-specified criterion/a)
IncidencePrevalence::plotIncidence(
  result = incidence_result_figure_2a,
  x = "incidence_start_date",
  y = "incidence_100000_pys",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "incidence_100000_pys_95CI_lower",
  ymax = "incidence_100000_pys_95CI_upper",
  facet = NULL,
  colour = "denominator_sex"
)

IncidencePrevalence::plotIncidence(
  result = incidence_result_figure_2b,
  x = "incidence_start_date",
  y = "incidence_100000_pys",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "incidence_100000_pys_95CI_lower",
  ymax = "incidence_100000_pys_95CI_upper",
  facet = NULL,
  colour = "denominator_age_group"
)

  • Table 2: Numbers reported in figures 1 and 2
IncidencePrevalence::tableIncidence(
  result = incidence_result_table_2,
  type = "gt",
  header = c("estimate_name"),
  groupColumn = c("cdm_name", "outcome_cohort_name"),
  settingsColumn = c("denominator_age_group", "denominator_sex"),
  hide = c("denominator_cohort_name", "analysis_interval"),
  .options = list(style = "darwin")
)
Incidence start date Incidence end date Denominator age group Denominator sex
Estimate name
Denominator (N) Person-years Outcome (N) Incidence 100,000 person-years [95% CI]
IPCI; cohort_1
2008-01-01 2008-12-31 0 to 64 Both 32 26.54 4 15,069.89 (4,106.04 - 38,584.89)
2009-01-01 2009-12-31 0 to 64 Both 30 23.38 2 8,552.86 (1,035.79 - 30,895.86)
2010-01-01 2010-12-31 0 to 64 Both 22 16.56 1 6,037.19 (152.85 - 33,637.07)
2011-01-01 2011-12-31 0 to 64 Both 16 13.77 0 0.00 (0.00 - 26,797.03)
2012-01-01 2012-12-31 0 to 64 Both 13 12.35 0 0.00 (0.00 - 29,874.31)
2013-01-01 2013-12-31 0 to 64 Both 11 7.24 1 13,804.53 (349.50 - 76,913.91)
2014-01-01 2014-12-31 0 to 64 Both 5 4.88 1 20,508.61 (519.23 - 114,266.68)
2015-01-01 2015-12-31 0 to 64 Both 4 4.00 0 0.00 (0.00 - 92,291.20)
2016-01-01 2016-12-31 0 to 64 Both 5 3.88 0 0.00 (0.00 - 95,025.23)
2017-01-01 2017-12-31 0 to 64 Both 3 2.76 0 0.00 (0.00 - 133,800.49)
  • Figure 3: Prevalence of disease over calendar time (per month/year) overall
IncidencePrevalence::plotPrevalence(
  result = prevalence_result_figure_1,
  x = "prevalence_start_date",
  y = "prevalence",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "prevalence_95CI_lower",
  ymax = "prevalence_95CI_upper",
  facet = NULL,
  colour = "cdm_name"
)

  • Figure 4: Prevalence of disease over calendar time (per month/year) stratified by sex and age (or other pre-specified criterion/a)
IncidencePrevalence::plotPrevalence(
  result = prevalence_result_figure_2a,
  x = "prevalence_start_date",
  y = "prevalence",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "prevalence_95CI_lower",
  ymax = "prevalence_95CI_upper",
  facet = NULL,
  colour = "denominator_sex"
)

IncidencePrevalence::plotPrevalence(
  result = prevalence_result_figure_2b,
  x = "prevalence_start_date",
  y = "prevalence",
  line = TRUE,
  point = TRUE,
  ribbon = TRUE,
  ymin = "prevalence_95CI_lower",
  ymax = "prevalence_95CI_upper",
  facet = NULL,
  colour = "denominator_age_group"
)

  • Table 3: Numbers reported in Figures 3 and 4.
IncidencePrevalence::tablePrevalence(
  result = prevalence_result_table_2,
  type = "gt",
  header = c("estimate_name"),
  groupColumn = c("cdm_name", "outcome_cohort_name"),
  settingsColumn = c("denominator_age_group", "denominator_sex"),
  hide = c("denominator_cohort_name", "analysis_interval"),
  .options = list(style = "darwin")
)
Prevalence start date Prevalence end date Denominator age group Denominator sex
Estimate name
Denominator (N) Outcome (N) Prevalence [95% CI]
IPCI; cohort_1
2008-01-01 2008-12-31 0 to 64 Both 30 9 0.30 (0.17 - 0.48)
2009-01-01 2009-12-31 0 to 64 Both 24 7 0.29 (0.15 - 0.49)
2010-01-01 2010-12-31 0 to 64 Both 21 7 0.33 (0.17 - 0.55)
2011-01-01 2011-12-31 0 to 64 Both 19 6 0.32 (0.15 - 0.54)
2012-01-01 2012-12-31 0 to 64 Both 15 4 0.27 (0.11 - 0.52)
2013-01-01 2013-12-31 0 to 64 Both 9 4 0.44 (0.19 - 0.73)
2014-01-01 2014-12-31 0 to 64 Both 8 4 0.50 (0.22 - 0.78)
2015-01-01 2015-12-31 0 to 64 Both 7 3 0.43 (0.16 - 0.75)
2016-01-01 2016-12-31 0 to 64 Both 3 0 0.00 (0.00 - 0.56)
2017-01-01 2017-12-31 0 to 64 Both 2 0 0.00 (0.00 - 0.66)

Patient-level characterization

These analyses include a descriptive analysis of a cohort of patients newly diagnosed with a specific condition of interest. This characterization typically includes pre-specified features (e.g. history of a certain list of diseases) as well as a list of the most commonly recorded codes in the patient records, and can be stratified by age, sex, or other characteristics.

A typical patient-level characterization study will have an objective that reads something like:

To characterise patients newly diagnosed with condition A, including an assessment of age, sex, and previous comorbidities, as well as a descriptive analysis of how they are treated in the year after diagnosis

Report Contents

The report will include an executive summary and the following tables and figures:

  • Table 1. Pre-index characteristics of patients newly diagnosed with a condition of interest, at the time of diagnosis/recording. Number of participants per pre-specified strata will be included where necessary/applicable.
CohortCharacteristics::tableCharacteristics(
  result = summarise_characteristics,
  type = "gt",
  header = c("cdm_name", "cohort_name"),
  groupColumn = "variable_name",
  hide = c("table", "window", "value", "table_name"),
  .options = list(style = "darwin")
)
CDM name
IPCI
Variable level Estimate name
Cohort name
ankle_sprain ankle_fracture forearm_fracture hip_fracture
Number records
- N 1,915 464 569 138
Number subjects
- N 1,357 427 510 132
Cohort start date
- Median [Q25 - Q75] 1982-11-09 [1968-06-15 - 1999-04-13] 1981-01-15 [1965-03-11 - 1997-08-03] 1981-07-24 [1967-03-05 - 2000-12-16] 1996-09-17 [1977-09-20 - 2010-06-22]
Range 1912-02-25 to 2019-05-30 1911-09-07 to 2019-06-23 1917-08-16 to 2019-06-26 1927-12-14 to 2019-05-08
Cohort end date
- Median [Q25 - Q75] 1982-12-10 [1968-07-06 - 1999-05-09] 1981-02-28 [1965-04-11 - 1997-10-12] 1981-08-23 [1967-04-10 - 2001-02-27] 1996-11-16 [1977-12-04 - 2010-07-22]
Range 1912-03-10 to 2019-05-30 1911-12-06 to 2019-06-24 1917-11-14 to 2019-06-26 1928-03-13 to 2019-06-07
Age
- Median [Q25 - Q75] 21 [9 - 41] 16 [9 - 43] 17 [9 - 46] 40 [13 - 66]
Mean (SD) 26.63 (21.03) 27.38 (24.70) 28.69 (25.97) 40.06 (28.82)
Range 0 to 105 0 to 107 0 to 106 1 to 108
Sex
Female N (%) 954 (49.82%) 238 (51.29%) 286 (50.26%) 74 (53.62%)
Male N (%) 961 (50.18%) 226 (48.71%) 283 (49.74%) 64 (46.38%)
Prior observation
- Median [Q25 - Q75] 7,833 [3,628 - 15,147] 6,030 [3,360 - 16,032] 6,289 [3,390 - 16,847] 14,522 [4,801 - 24,401]
Mean (SD) 9,918.17 (7,672.74) 10,196.57 (9,011.31) 10,670.43 (9,480.30) 14,821.73 (10,521.89)
Range 299 to 38,429 299 to 39,430 299 to 38,943 390 to 39,792
Future observation
- Median [Q25 - Q75] 12,868 [6,860 - 18,078] 13,748 [6,878 - 19,331] 13,165 [5,988 - 18,548] 7,798 [2,874 - 14,913]
Mean (SD) 12,865.11 (7,543.50) 13,470.92 (8,215.96) 12,913.27 (7,929.17) 9,167.33 (7,160.81)
Range 0 to 38,403 1 to 39,051 0 to 36,654 0 to 29,045
Days in cohort
- Median [Q25 - Q75] 22 [15 - 29] 61 [31 - 91] 61 [31 - 91] 61 [31 - 91]
Mean (SD) 25.02 (8.00) 61.65 (25.38) 62.16 (25.32) 59.26 (24.79)
Range 1 to 37 2 to 92 1 to 91 1 to 91
Medications prior to index date
Acetaminophen N (%) 1,530 (79.90%) 357 (76.94%) 447 (78.56%) 119 (86.23%)
Warfarin N (%) 12 (0.63%) 8 (1.72%) 11 (1.93%) 4 (2.90%)
Morphine N (%) 15 (0.78%) 1 (0.22%) 2 (0.35%) 2 (1.45%)
Medications on index date
Acetaminophen N (%) 773 (40.37%) 240 (51.72%) 264 (46.40%) 90 (65.22%)
Morphine N (%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Warfarin N (%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
  • Table 2. Number and percentage with an outcome of interest in the x years following diagnosis.
CohortCharacteristics::tableTopLargeScaleCharacteristics(
  result = lsc_characteristics,
  topConcepts = 10,
  type = "gt"
)
Window
-inf to -1
0 to 0
Table name
condition_occurrence
drug_exposure
procedure_occurrence
condition_occurrence
drug_exposure
Top
Type
event episode event event episode
1 Viral sinusitis (40481087)
981 (72.3%)
poliovirus vaccine, inactivated (40213160)
994 (73.2%)
Suture open wound (4125906)
363 (26.8%)
Sprain of ankle (81151)
1357 (100.0%)
Aspirin 81 MG Oral Tablet (19059056)
470 (34.6%)
2 Otitis media (372328)
909 (67.0%)
Aspirin 81 MG Oral Tablet (19059056)
842 (62.0%)
Bone immobilization (4170947)
356 (26.2%)
Acetaminophen 325 MG Oral Tablet (1127433)
330 (24.3%)
3 Acute viral pharyngitis (4112343)
845 (62.3%)
Acetaminophen 325 MG Oral Tablet (1127433)
737 (54.3%)
Sputum examination (4151422)
282 (20.8%)
Acetaminophen 160 MG Oral Tablet (1127078)
199 (14.7%)
4 Acute bronchitis (260139)
767 (56.5%)
Acetaminophen 160 MG Oral Tablet (1127078)
559 (41.2%)
Plain chest X-ray (4163872)
137 (10.1%)
Ibuprofen 200 MG Oral Tablet (19078461)
192 (14.2%)
5 Streptococcal sore throat (28060)
499 (36.8%)
Amoxicillin 250 MG / Clavulanate 125 MG Oral Tablet (1713671)
499 (36.8%)
6 Osteoarthritis (80180)
283 (20.9%)
Penicillin V Potassium 250 MG Oral Tablet (19133873)
491 (36.2%)
7 Concussion with no loss of consciousness (378001)
185 (13.6%)
Penicillin G 375 MG/ML Injectable Solution (19006318)
384 (28.3%)
8 Acute bacterial sinusitis (4294548)
168 (12.4%)
Acetaminophen 21.7 MG/ML / Dextromethorphan Hydrobromide 1 MG/ML / doxylamine succinate 0.417 MG/ML Oral Solution (40229134)
296 (21.8%)
9 Sinusitis (4283893)
166 (12.2%)
tetanus and diphtheria toxoids, adsorbed, preservative free, for adult use (40213227)
288 (21.2%)
10 Chronic sinusitis (257012)
162 (11.9%)
hepatitis B vaccine, adult dosage (40213306)
226 (16.6%)
  • Figure 1. Kaplan-Meier or Cumulative Incidence Function plots of the probability of a pre-specified outcome following index diagnosis of the condition of interest.
CohortSurvival::tableSurvival(
  x = single_event_data,
  times = NULL,
  timeScale = "days",
  header = c("estimate"),
  type = "gt",
  groupColumn = NULL,
  .options = list(style = "darwin")
)
CDM name Target cohort Age group Sex Outcome name
Estimate name
Number records Number events Median survival (95% CI) Restricted mean survival (95% CI)
IPCI mgus_diagnosis overall overall death_cohort 1,384 963 98.00 (92.00, 103.00) 133.00 (124.00, 141.00)
<70 overall death_cohort 574 293 180.00 (158.00, 206.00) 197.00 (181.00, 214.00)
>=70 overall death_cohort 810 670 71.00 (66.00, 77.00) 86.00 (80.00, 91.00)
overall F death_cohort 631 423 108.00 (100.00, 121.00) 143.00 (131.00, 156.00)
M death_cohort 753 540 88.00 (79.00, 97.00) 125.00 (114.00, 136.00)
<70 F death_cohort 240 109 215.00 (179.00, 260.00) 220.00 (194.00, 245.00)
M death_cohort 334 184 158.00 (139.00, 189.00) 183.00 (163.00, 203.00)
>=70 F death_cohort 391 314 82.00 (75.00, 94.00) 96.00 (87.00, 105.00)
M death_cohort 419 356 61.00 (54.00, 70.00) 80.00 (71.00, 90.00)
CohortSurvival::riskTable(
  x = competing_risk_data,
  eventGap = NULL,
  header = c("estimate"),
  type = "gt",
  groupColumn = NULL,
  .options = list(style = "darwin")
)
CDM name Target cohort Sex Outcome type Outcome name Time Event gap
Estimate name
Number at risk Number events Number censored
IPCI mgus_diagnosis overall outcome progression 0 30 1,384 0 0
30 30 1,090 25 3
60 30 874 19 27
90 30 635 19 77
120 30 424 13 74
150 30 288 9 52
180 30 178 10 52
210 30 103 4 54
240 30 57 2 32
270 30 29 1 18
300 30 16 1 10
330 30 7 1 6
360 30 3 1 3
390 30 2 1 0
420 30 1 0 1
424 30 1 0 0
competing_outcome death_cohort 0 30 1,384 0 0
30 30 1,090 275 3
60 30 874 170 27
90 30 635 147 77
120 30 424 113 74
150 30 288 77 52
180 30 178 47 52
210 30 103 16 54
240 30 57 12 32
270 30 29 8 18
300 30 16 1 10
330 30 7 2 6
360 30 3 0 3
390 30 2 0 0
420 30 1 0 1
424 30 1 1 0
F outcome progression 0 30 631 0 0
30 30 511 16 2
60 30 431 8 10
90 30 321 10 32
120 30 214 7 44
150 30 143 4 24
180 30 88 4 27
210 30 54 1 25
240 30 33 1 16
270 30 18 0 11
300 30 11 1 5
330 30 4 1 4
360 30 2 1 1
390 30 1 1 0
394 30 1 0 1
M outcome progression 0 30 753 0 0
30 30 579 9 1
60 30 443 11 17
90 30 314 9 45
120 30 210 6 30
150 30 145 5 28
180 30 90 6 25
210 30 49 3 29
240 30 24 1 16
270 30 11 1 7
300 30 5 0 5
330 30 3 0 2
360 30 1 0 2
390 30 1 0 0
420 30 1 0 0
424 30 1 0 0
F competing_outcome death_cohort 0 30 631 0 0
30 30 511 107 2
60 30 431 60 10
90 30 321 67 32
120 30 214 56 44
150 30 143 42 24
180 30 88 23 27
210 30 54 8 25
240 30 33 6 16
270 30 18 3 11
300 30 11 0 5
330 30 4 2 4
360 30 2 0 1
390 30 1 0 0
394 30 1 0 1
M competing_outcome death_cohort 0 30 753 0 0
30 30 579 168 1
60 30 443 110 17
90 30 314 80 45
120 30 210 57 30
150 30 145 35 28
180 30 90 24 25
210 30 49 8 29
240 30 24 6 16
270 30 11 5 7
300 30 5 1 5
330 30 3 0 2
360 30 1 0 2
390 30 1 0 0
420 30 1 0 0
424 30 1 1 0
  • Table 3. Number and percentage treated with a pre-specified medicine or list of medicines within a pre-specified time period following an index diagnosis.
CohortCharacteristics::tableCharacteristics(
  result = summarise_characteristics,
  type = "gt",
  header = c("cdm_name", "cohort_name"),
  groupColumn = "variable_name",
  hide = c("table", "window", "value", "table_name"),
  .options = list(style = "darwin")
)
CDM name
IPCI
Variable level Estimate name
Cohort name
ankle_sprain ankle_fracture forearm_fracture hip_fracture
Number records
- N 1,915 464 569 138
Number subjects
- N 1,357 427 510 132
Cohort start date
- Median [Q25 - Q75] 1982-11-09 [1968-06-15 - 1999-04-13] 1981-01-15 [1965-03-11 - 1997-08-03] 1981-07-24 [1967-03-05 - 2000-12-16] 1996-09-17 [1977-09-20 - 2010-06-22]
Range 1912-02-25 to 2019-05-30 1911-09-07 to 2019-06-23 1917-08-16 to 2019-06-26 1927-12-14 to 2019-05-08
Cohort end date
- Median [Q25 - Q75] 1982-12-10 [1968-07-06 - 1999-05-09] 1981-02-28 [1965-04-11 - 1997-10-12] 1981-08-23 [1967-04-10 - 2001-02-27] 1996-11-16 [1977-12-04 - 2010-07-22]
Range 1912-03-10 to 2019-05-30 1911-12-06 to 2019-06-24 1917-11-14 to 2019-06-26 1928-03-13 to 2019-06-07
Age
- Median [Q25 - Q75] 21 [9 - 41] 16 [9 - 43] 17 [9 - 46] 40 [13 - 66]
Mean (SD) 26.63 (21.03) 27.38 (24.70) 28.69 (25.97) 40.06 (28.82)
Range 0 to 105 0 to 107 0 to 106 1 to 108
Sex
Female N (%) 954 (49.82%) 238 (51.29%) 286 (50.26%) 74 (53.62%)
Male N (%) 961 (50.18%) 226 (48.71%) 283 (49.74%) 64 (46.38%)
Prior observation
- Median [Q25 - Q75] 7,833 [3,628 - 15,147] 6,030 [3,360 - 16,032] 6,289 [3,390 - 16,847] 14,522 [4,801 - 24,401]
Mean (SD) 9,918.17 (7,672.74) 10,196.57 (9,011.31) 10,670.43 (9,480.30) 14,821.73 (10,521.89)
Range 299 to 38,429 299 to 39,430 299 to 38,943 390 to 39,792
Future observation
- Median [Q25 - Q75] 12,868 [6,860 - 18,078] 13,748 [6,878 - 19,331] 13,165 [5,988 - 18,548] 7,798 [2,874 - 14,913]
Mean (SD) 12,865.11 (7,543.50) 13,470.92 (8,215.96) 12,913.27 (7,929.17) 9,167.33 (7,160.81)
Range 0 to 38,403 1 to 39,051 0 to 36,654 0 to 29,045
Days in cohort
- Median [Q25 - Q75] 22 [15 - 29] 61 [31 - 91] 61 [31 - 91] 61 [31 - 91]
Mean (SD) 25.02 (8.00) 61.65 (25.38) 62.16 (25.32) 59.26 (24.79)
Range 1 to 37 2 to 92 1 to 91 1 to 91
Medications prior to index date
Acetaminophen N (%) 1,530 (79.90%) 357 (76.94%) 447 (78.56%) 119 (86.23%)
Warfarin N (%) 12 (0.63%) 8 (1.72%) 11 (1.93%) 4 (2.90%)
Morphine N (%) 15 (0.78%) 1 (0.22%) 2 (0.35%) 2 (1.45%)
Medications on index date
Acetaminophen N (%) 773 (40.37%) 240 (51.72%) 264 (46.40%) 90 (65.22%)
Morphine N (%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Warfarin N (%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
  • Figure 2. Bar chart with proportions of individuals receiving each of the pre-specified list of medicines, devices or procedures, and combinations within a pre-specified time window after diagnosis.
CohortCharacteristics::plotCharacteristics(
    result = plot_data,
    plotType = "barplot",
    colour = "variable_level",
    facet = c("cdm_name", "cohort_name")
  ) 

- Figure 3. Sunburst plot depicting treatment patterns after an index diagnosis.

TreatmentPatterns::ggSunburst(treatmentPathways = treatmentPathways_data)

- Figure 4. Sankey diagram depicting treatment sequences after an index diagnosis.

TreatmentPatterns::createSankeyDiagram(treatmentPathways = treatmentPathways_data)