Summarise characteristics of individuals
Source:R/summariseCharacteristics.R
summariseCharacteristics.Rd
`r lifecycle::badge("deprecated")`
Arguments
- cohort
A cohort in the cdm.
- cdm
A cdm reference.
- strata
Stratification list.
- demographics
Whether to summarise demographics data.
- ageGroup
A list of age groups.
- tableIntersect
A list of arguments that uses addTableIntersect function to add variables to summarise.
- cohortIntersect
A list of arguments that uses addCohortIntersect function to add variables to summarise.
- conceptIntersect
A list of arguments that uses addConceptIntersect function to add variables to summarise.
- otherVariables
Other variables contained in cohort that you want to be summarised.
Examples
# \donttest{
library(PatientProfiles)
cdm <- mockPatientProfiles()
summariseCharacteristics(
cohort = cdm$cohort1,
ageGroup = list(c(0, 19), c(20, 39), c(40, 59), c(60, 79), c(80, 150)),
tableIntersect = list(
"Number visits prior year" = list(
tableName = "visit_occurrence", value = "count", window = c(-365, -1)
)
),
cohortIntersect = list(
"Drugs prior year" = list(
targetCohortTable = "cohort2", value = "flag", window = c(-365, -1)
),
"Conditions any time prior" = list(
targetCohortTable = "cohort2", value = "flag", window = c(-Inf, -1)
)
)
)
#> ℹ adding demographics columns
#> ℹ adding table intersect columns for table: visit_occurrence
#> ℹ adding cohort intersect columns for table: cohort2
#> ℹ adding cohort intersect columns for table: cohort2
#> ℹ summarising data
#> ℹ The following estimates will be computed:
#> • flag_variable_00035_variable_00034: count, percentage
#> • flag_variable_00036_variable_00034: count, percentage
#> • flag_variable_00038_variable_00037: count, percentage
#> • flag_variable_00039_variable_00037: count, percentage
#> • variable_00028: count, percentage
#> • variable_00032: count, percentage
#> • cohort_start_date: min, q05, q25, median, q75, q95, max
#> • cohort_end_date: min, q05, q25, median, q75, q95, max
#> • variable_00030: min, q05, q25, median, q75, q95, max, mean, sd
#> • variable_00031: min, q05, q25, median, q75, q95, max, mean, sd
#> • variable_00029: min, q05, q25, median, q75, q95, max, mean, sd
#> • count_visit_occurrence_variable_00033: min, q05, q25, median, q75, q95, max,
#> mean, sd
#> ! Table is collected to memory as not all requested estimates are supported on
#> the database side
#> → Start summary of data, at 2024-05-11 12:04:13.487877
#> ✔ Summary finished, at 2024-05-11 12:04:13.64446
#> ✔ summariseCharacteristics finished!
#> # A tibble: 64 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 PP_MOCK cohort_name cohort_1 overall overall
#> 2 1 PP_MOCK cohort_name cohort_1 overall overall
#> 3 1 PP_MOCK cohort_name cohort_1 overall overall
#> 4 1 PP_MOCK cohort_name cohort_1 overall overall
#> 5 1 PP_MOCK cohort_name cohort_1 overall overall
#> 6 1 PP_MOCK cohort_name cohort_1 overall overall
#> 7 1 PP_MOCK cohort_name cohort_1 overall overall
#> 8 1 PP_MOCK cohort_name cohort_1 overall overall
#> 9 1 PP_MOCK cohort_name cohort_1 overall overall
#> 10 1 PP_MOCK cohort_name cohort_1 overall overall
#> # ℹ 54 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
CDMConnector::cdmDisconnect(cdm = cdm)
# }