Pivots the input dataframe so the values of the column group_name are transformed into columns that contain values from the group_level column.
Examples
{
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult(settings = tibble(
"result_id" = c(1, 2), "custom" = c("A", "B")
))
x
x |> splitGroup()
}
#> `result_type`, `package_name`, and `package_version` added to settings.
#> # A tibble: 2 × 12
#> result_id cdm_name cohort_name strata_name strata_level variable_name
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 cprd my_cohort sex male Age group
#> 2 2 eunomia my_cohort sex male Age group
#> # ℹ 6 more variables: variable_level <chr>, estimate_name <chr>,
#> # estimate_type <chr>, estimate_value <chr>, additional_name <chr>,
#> # additional_level <chr>