'summarised_results' object constructor
Usage
newSummarisedResult(x, settings = attr(x, "settings"))
Examples
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = 1L,
"cdm_name" = "cprd",
"group_name" = "cohort_name",
"group_level" = "acetaminophen",
"strata_name" = "sex &&& age_group",
"strata_level" = c("male &&& <40", "male &&& >=40"),
"variable_name" = "number_subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("5", "15"),
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult()
#> `result_type`, `package_name`, and `package_version` added to settings.
x
#> # A tibble: 2 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 cprd cohort_name acetaminophen sex &&& age_group male &&& <40
#> 2 1 cprd cohort_name acetaminophen sex &&& age_group male &&& >=40
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
settings(x)
#> # A tibble: 1 × 8
#> result_id result_type package_name package_version group strata additional
#> <int> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 "" "" "" cohort_n… sex &… ""
#> # ℹ 1 more variable: min_cell_count <chr>
summary(x)
#> A summarised_result object with 2 rows, 1 different result_id, 1 different cdm
#> names, and 7 settings.
#> CDM names: cprd.
#> Settings: result_type, package_name, package_version, group, strata,
#> additional, and min_cell_count.
x <- tibble(
"result_id" = 1L,
"cdm_name" = "cprd",
"group_name" = "cohort_name",
"group_level" = "acetaminophen",
"strata_name" = "sex &&& age_group",
"strata_level" = c("male &&& <40", "male &&& >=40"),
"variable_name" = "number_subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("5", "15"),
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult(settings = tibble(
result_id = 1L, result_type = "custom_summary", mock = TRUE, value = 5
))
#> `package_name` and `package_version` added to settings.
#> `mock` and `value` casted to character.
x
#> # A tibble: 2 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 cprd cohort_name acetaminophen sex &&& age_group male &&& <40
#> 2 1 cprd cohort_name acetaminophen sex &&& age_group male &&& >=40
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
settings(x)
#> # A tibble: 1 × 10
#> result_id result_type package_name package_version group strata additional
#> <int> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 custom_summary "" "" cohor… sex &… ""
#> # ℹ 3 more variables: min_cell_count <chr>, mock <chr>, value <chr>
summary(x)
#> A summarised_result object with 2 rows, 1 different result_id, 1 different cdm
#> names, and 9 settings.
#> CDM names: cprd.
#> Settings: result_type, package_name, package_version, group, strata,
#> additional, min_cell_count, mock, and value.