Pivots the input dataframe so any pair name-level columns are transformed into columns (name) that contain values from the corresponding level.
Examples
{
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult(settings = tibble(
"result_id" = c(1, 2), "custom" = c("A", "B")
))
x
x |> splitAll()
}
#> `result_type`, `package_name`, and `package_version` added to settings.
#> # A tibble: 2 × 9
#> result_id cdm_name cohort_name sex variable_name variable_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 cprd my_cohort male Age group 10 to 50
#> 2 2 eunomia my_cohort male Age group 10 to 50
#> # ℹ 3 more variables: estimate_name <chr>, estimate_type <chr>,
#> # estimate_value <chr>