Filter the strata_name-strata_level pair in a summarised_result
Arguments
- result
A
<summarised_result>
object.- ...
Expressions that return a logical value (
strataColumns()
are used to evaluate the expression), and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.
Examples
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = c("sex", "sex &&& age_group", "sex &&& year"),
"strata_level" = c("Female", "Male &&& <40", "Female &&& 2010"),
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult()
#> `result_type`, `package_name`, and `package_version` added to settings.
x |>
filterStrata(sex == "Female")
#> # A tibble: 2 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 eunomia cohort_name my_cohort sex Female
#> 2 1 eunomia cohort_name my_cohort sex &&& year Female &&& 2010
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>