Filter the group_name-group_level pair in a summarised_result
Arguments
- result
A
<summarised_result>
object.- ...
Expressions that return a logical value (
groupColumns()
are used to evaluate the expression), and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.
Examples
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = c("cohort_name", "age_group &&& cohort_name", "age_group"),
"group_level" = c("my_cohort", ">40 &&& second_cohort", "<40"),
"strata_name" = "sex",
"strata_level" = "Female",
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",
"additional_level" = "overall"
) |>
newSummarisedResult()
#> `result_type`, `package_name`, and `package_version` added to settings.
x |>
filterGroup(cohort_name == "second_cohort")
#> # A tibble: 1 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 eunomia age_group &&& cohort_… >40 &&& se… sex Female
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>