Filter the additional_name-additional_level pair in a summarised_result
Source:R/filter.R
filterAdditional.Rd
Filter the additional_name-additional_level pair in a summarised_result
Arguments
- result
A
<summarised_result>
object.- ...
Expressions that return a logical value (
additionalColumns()
are used to evaluate the expression), and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.
Value
A <summarised_result>
object with only the rows that fulfill the
required specified additional.
Examples
library(dplyr)
library(omopgenerics)
x <- tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = c("cohort1", "cohort2", "cohort3"),
"strata_name" = "sex",
"strata_level" = "Female",
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = c("year", "time_step", "year &&& time_step"),
"additional_level" = c("2010", "4", "2015 &&& 5")
) |>
newSummarisedResult()
#> `result_type`, `package_name`, and `package_version` added to settings.
x |>
filterAdditional(year == "2010")
#> # A tibble: 1 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 eunomia cohort_name cohort1 sex Female
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>